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I. Introduction

In radar, sonar and seismology one is frequently interested in estimating the

directions-of-arrival and the spectral densities of radiating sources from measure-

ments provided by a passive array of sensors. In the simplest case, the signals

received by the sensors consist of scaled and delayed replicas of the waveform

radiated by a single source. In a more complicated scenario, there may be multi-

ple sources and multiple propagation paths from the sources to the sensors.

The problem of the simultaneous estimation of the directions-of-arrival and

the spectral densities of the impinging sources can be regarded as a 2-D (two-

dimensional) spectral estimation problem. Given spatial and temporal samples of

the received signals, the problem is to estimate the 2-D spectrum, or the energy

distribution, in both the spatial (wavenumber) and temporal (frequency) domains,

i.e, in the wavenumber-frequency plane. The spatial spectrum consists of point

masses at the different wavenumbers. The temporal spectrum may consist of

point masses at different frequencies, in the case of narrowband sources, or may

be continuous in the case of wideband sources. When the spectral-densities of

the sources are known, the problem of direction-of-arrival estimation reduces to a

I-D spectral estimation problem in the spatial domain.

Since the number of samples (i.e. sensors) in the spatial domain is usually

small, classical Fourier analysis yields low spatial resolution. As a result, alterna-

tive methods that provide higher resolution have been developed. The Maximum

Entropy (ME) method of Burg (1967) and the Minimum Variance (MV) method

of Capon (1960) were the first methods that provided increased resolution in the
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2-D problem, while the Maximum Entropy method was originally developed for

the I-D problem. Different extensions of the Maximum Entropy method to the

2-D problem have been proposed by Roucos and Childers (1980), Lim and Malik

(1081) and McClellan (1082) among others. A different high resolution method

for the 2-D problem, known as 2-D linear-prediction, was developed by Jackson

and Chien (1078), Jain and Ranganath (1978), Frost and Sullivan (1979) and

Kumareseran and Tufts (1981). Recently, another method for the 2-D problem

based on ARMA modeling of the received signals has been proposed by Morf et al

(1970), and further developed and elaborated by Porat and Friedlander (1983)

and Nehorai and Morf (1083). We should note that the Maximum-Likelihood

estimator, though asymptotically optimal, has not been advocated for the 2-D

problem because of the high computational complexity involved. In the somewhat

simpler I-D problem, where the spectral densities of the sources are known, the

Maximum-Likelihood estimator has been studied by Good (1963), Hahn and

Tretter (1073), Schweppe (1968) and Wax and Kailath (1083a).

In the special case that the sources are narrowband and have the same

known center-frequency, the problem of direction-of-arrival estimation reduces to

the problem of I-D harmonic-retrieval. A method, tailored especially for this

problem, that provides better resolution than offered by the Minimum Variance,

Maximum Entropy and the linear-prediction methods, was pioneered by

Pisarenko (1973). The method is based on the eigenstructure of the covariance

matrix of the received signals. Schmidt (1979) (1981), and independently Bien-

venu and Kopp (1980, 1981), have improved the resolution of Pisarenko's
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method, and extended it from the restricted uniform linear array case to a gen-

eral array. Schmidt's method - as Pisareako's - is a time-domain method based

on the eigenstructure of the covariance matrix of the received signals; Bienvenu

and Kopp's method is a frequency-domain method based on the eigenstructure of

the spectral density matrix of the received signals. Related but somewhat

different eigenstructure methods for the I-D problem have been proposed by Lig-

get (1972), Owsley (1973), Reddi (1979), Johnson and Degraff (1982),

Kumareseran and Tufts (1983) and Bronez and Cadzow (1983). The methods

described above are off-line; on-line implementations of Pisarenko's method have

been presented by Thompson (1979), Cantoni and Godara (1980) and Reddy et

al. (1982a). Extension of these on-line methods to the 2-D harmonic retrieval

problem have been presented by Larimore (1981) and Reddy et. al (1982b).

In this paper we extend the eigenstructure approach to the 2-D problem.

We present a time-domain eigenstructure method for the 2-D harmonic retrieval

problem, that is for the simultaneous estimation of both the direction-of-arrival

and the center-frequency of narrowband sources, and a frequency-domain eigen-

structure method for the estimation of the direction-of-arrival and the spectral

density matrix of wideband sources.

The narrowband and the wideband 2-D problems are formulated in section

B. The time-domain eigenstructure method for the narrowband problem is

presented in section M. The frequency-domain eigenstructure method for the

wideband problem is presented in section IV. Simulation results that illustrate

the performance of the proposed algorithms are presented in section V.



11. Problem Formulation

The formulation will be somewhat different for the narrowband and wide-

band problems. Following the convention in array processing, a problem will be

referred to as a narrowband problem if the bandwidth of the impinging sources is

much smaller than the reciprocal of the propagation time of the signal across the

array; otherwise it will be referred to as wideband.

A. The Narrowband Problem

Consider an array with m sensors, each followed by a tapped-delay-line

with p taps spaced D delay units apart. Assume that d narrowband sources

(d < rnp) centered at frequencies w1,...,w 4 , impinge on the array from direc-

tions ,.,* d (see Fig. 1). Assume that the signals emitted by the sources are

stationary zero-mean narrowband stochastic processes. The signals received by

the sensors are scaled and delayed replicas of the radiated signals. Then, using

complex (analytic) signal representation, the output of the h-th delay unit of

the i-th sensor, can be expressed as

4

r;(t - hD) - aike(t - rih - hD) + nj(t - hD) (1)
ku-!

where sk() is the signal radiated by the k-th source as observed at an arbitrarily

chosen reference point, Wk is the center frequency of the k-th source, i is the

propagation delay between the i-th sensor and the reference point for the k-th

source, aik is the amplitude response of the i-th sensor to the k-th source, and

n(.) is the additive noise at the i-th sensor.
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Since sk(.) is a narrowband process we can well approximate the time-delay

by a phase-shift. Therefore, we can rewrite (1) as

( i-l...,M
r(t - hD) ak kk(t)C'' + n,(t - (2) h)O,...,p-l (2)

hD =-..,-

Assume that the received signals are sampled simultaneously at times

t ( k - ,...,N ), yielding N "snapshots", each consisting of mp samples

ri(t k - hD) ( i h ,...,m; A = 0,...p - 1 ). Grouping the samples correspond-

ing to the i-th sensor into a p X 1 vector, we can rewrite equation (2) in matrix

form

ri(t)= Ais(1) + ni(t) i 1- ,...,m (3.a)

where r;(t) and n,(t) are the p X 1 vectors

r i(t= [ ri(t) ri(t - (p-l)D)J (3.b)

ni(t)--[ ni(t) n,(t - (p-1)D)] (3.c)

s(t) is the d X 1 vector

aT(t) = [8 1(t) . (t) (3.d)

and A i is the p X d matrix

di I C ''W 'i ', I a id e- W s r-d

A -•(3.e)

aile-jwjr-jwo(p-l)D ... dide -/ i d -jWj (p-I)D

Stacking the p X I vectors r,(t) (i =-,...,m) into a mp X I
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"snapshot" vector r(t), we can further simplify the notation and rewrite equa-

tion (3) as

r(t) As(t) + n(t) (4.a)

where r(t) and a(I) are the mp X 1 vectors

rT(t)-r (t) .-. r Z(t)] (4.b)

n3 (t) n -. niT(t) ... n T(t)] (4.c)

and A is the mp X d matrix

A - = (4.d)

m A' e-jw'v. z-jw(p-i)D ... me- " -io(-l/

Note that each column of A is associated with a different source. We shall

denote these column vectors by Ae,,, ( k = 1,...,d ), and refer to them as the

direction .frequency vectors of the sources.

Multiplying (4.a) by its conjugate transpose and taking expectations, assum-

ing that the noises are zero-mean with variance v2, that their correlation time is

smaller than D, and that they are uncorrelated with each other and with the

source signals, we obtain

R -ASAt + A2 1 (5.a)

where t denotes the conjugate transpose, R is the covariance matrix of the

received signals, I is the identity matrix, and S is the covariance matrix of

the sources, i.e.,
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S - E[ s(t)st(t) ] (5.b)

where E denotes the expectation operator.

We shall assume that S is notuingular. That is, no source is a scaled and

delayed version of any other source; in other words, no two sources are fully

correlated. We do, however, allow for sources to be partially correlated, in the

sense that the covariance matrix of the sources may be nondiagonal, as long as it

is nonsingular. This allowance makes the model applicable to certain kinds of

multipath problems, e.g. those where the reflection introduces some random per-

turbation to the multipath signal.

B. The Wideband Problem

Consider, as before, an array with m sensors. Assume now that d wide-

band sources (d < m), with identical bandwidth B, impinge on the array from

directions , The signals emitted by the sources are assumed to be station-

ary zero-mean stochastic processes. Using the notation of (1), the signal received

at the i-th sensor can be expressed as

d

ri(t) = a k*k(t - ) + NO) (6)
k-I

Unlike the narrowband problem, where we have formulated the problem in

terms of the sampled data, it turns out that for the wideband problem it is more

convenient to formulate the problem in terms of the continuous signals. Assum-

ing that we are observing the received signals over a finite interval T, it follows

that we can approximately represent the received signal ri(.) by a Fourier-series
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+M
ri(t) = (w.)e '  (7.a)

where R(w.) are the Fourier-coefficients, given by

T/2
Ri() f ri(t)e' dt (7.b)

-T/2

and

2rc
S nI...,I+ M (7.c)

where wi and w+ M are the lowest and highest frequencies, respectively,

included in the bandwidth B. Note that there are only positive frequencies since

we are using the complex (analytic) signal representation, and that there are a

finite number of them since we are assuming that the signals have an approxi-

mately defined finite bandwidth B.

Then representing both sides of (6) by their Fourier-coefficients, assuming

that the observation time is much longer than the propagation time of the signals

across the array (7,k « T) so that to a good approximation the time-delay

transforms to phase-shift in the Fourier-domain, we obtain

Ri(w3 ) = e a, -C3  Sk(w.) + Ni(w.) (8)
k-1

In matrix notation this becomes

R(w.) = A(w.)S(w.) + N(w1 ) (9.a)

where R (w.) and N (w.) are the m X 1 vectors
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R(w 5 ) ff IR,(w) ... R,(,)] (.b)

N T(w) -- [NV(w.) .- Nm(w. )] (9.c)

S(w.) is the d X 1 vector

S T(W.) [S(W.) ... S(W)i (9.d)

and A(w,.) is the m X d matrix

A(w.) =(9.e)

.am l e - J werml  . .. a ~ -.W S rod

de

Note that each column of A(w.) is associated with a different source.

We shall denote these column vectors by Ai,(w,) ( k = 1,...,d ), and refer to

them as the direction vectors of the sources.

Multiplying (9.a) by its conjugate transpose, and taking expectations, assum-

ing that the noises are zero-mean and uncorrelated with the signals, we obtain

E[R(w.)Rt(w)J = A(w.)EJS(w.st )]A t(w.) + E[N(w.)Nt( J)J (10)

Next, assuming that the observation time is large compared to the correlation

time of the processes involved, the covariance matrix of the Fourier-coefficient

vector will be approximately equal to the spectral density matrix (see, e.g.,

Whalen (1971) p.81). Thus, assuming that the noises are uncorrelated with each

other and have the same spectral densities, we can rewrite (10) as
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K( A) A (.)P(w.)At(w,) + o2(w3)I (II)

where K(w.) and P(w.) are the spectral density matrices of the processes

{(r(.)},' I and { 1i. 1, respectively, and o2(w.) is the spectral density of the
noises (ni(.)},., 1 .

We shall assume that P(w.) is nonsingular, i.e., no source is a scaled and

delayed version of any other source. s in the narrowband case, we allow for

sources to be partially correlated, in the sense that the spectral-density matrix of

the sources may be nondiagonal.
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M1. Time-domain Elgenstructure Method for the Narrowband Problem

The solution we are going to present to the narrowband problem is based on

the the eigenstructure of the covariance matrix R and therefore is referred to

as a time-domain method. It presumes that the following conditions hold:

(I) The covariance matrix of the sources S is nonsingular.

(I) Any set of d+ 1 direction-frequency vectors are linearly independent.

With these assumptions it can be easily verified that the eigenvalues and

eigenvectors of R, denoted by ('I -- X\ ... 2! X p) and

{V 1,V2, ... , V,,p,), respectively, have the following properties:

The minimal eigenvalue of R is u2 with multiplicity mp - d, i.e.,

,+ + I -\Xd .2  (12)

The eigenvectors corresponding to the minimal eigenvalue are orthogonal to the

columns of the matrix A, i.e.,

AtVi 0 i f d+ 1,...,rap (13.a)

or, more explicitly

{Vd+I,... ,Vmp)J - ,,, ,..., A ,w, (13.b)

where A #,, is the i-th column of A, referred to as the direction-frequency

vector of the i-th source.

Note that for properties (12) and (13) to hold, it is only required that d,

rather than d + 1 as in condition (II) above, direction-frequency vectors be
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linearly independent. However, the stronger condition (!I) is needed to assure the

uniqueness of the solution obtained by the eigenstructure method, as we shall

presently show.

The eigenstructure method is based on straightforward exploitation of pro-

perties (12) and (13). Observe, first, that it follows from (12) that the number of

sources can be determined from the multiplicity of the smallest eigenvalue.

Second, it follows from the orthogonality relation (13) between the direction-

frequency vectors of the impinging sources and the eigenvectors corresponding to

the minimal eigenvalue, that the directions-of-arrival and the center-frequencies of

the sources can be determined simply by searching for those direction-frequency

vectors that are orthogonal to the eigenvectors corresponding to the minimal

eigenvalue. Note that to avoid ambiguities, no direction-frequency vector other

than those corresponding to the impinging sources, should be orthogonal to the

eigenvectors corresponding to the minimal eigenvalue. That will be the case if

the span of the d direction-frequency vectors of the impinging sources does

not include any other direction-frequency vector. This implies that to assure

unambiguous results, any set of d+ 1 direction-frequency vectors should be

linearly independent, as stated in condition (U) above.

A. Determination of the Number of Sources

The method for determining the number of sources we have outlined above

was based on the eigenvalues of the true covariance matrix. In practice, however,

the true covariance matrix is unknown. To apply the method we must, therefore,
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estimate the eigenvalues from the data. The problem is that the estimated eigen-

values will not obey relation (12). With probability one, the small mp-d eigen-

values will all be different, somehow clustered around their true value. Thus it is

impossible to determine the number of sources simply by observing the small

eigenvalues, and a more sophisticated procedure, based on statistical considera-

tions is needed.

Such a procedure was developed by Bartlett and Lawley (Bartlett (1954),

Lawley (1956)) in the context of factor analysis. The Bartlett-Lawley procedure

takes the form of a sequence of nested hypothesis tests for the multiplicity of the

smallest eigenvalue, starting from the highest possible multiplicity and testing

successively down to the lowest possible multiplicity. At the k'th step of the pro-

cedure ( k = O,...,mp-I ), the null hypothesis that the smallest eigenvalue of the

covariance matrix has multiplicity mp - k, namely,

Hk>: >-k+ I=Xk+2 "'" - p

is tested. The likelihood-ratio for this problem, under Gaussian assumptions, is

given by

Qk --- I """m''" (14)

tmp-k i-t+

where 11> 12 ... > I.p are the eigenvalues of the sample-covariance

matrix R, defined by



i r(ti)r(ti), (15)

si=

Note that Qk is a monotonic function of the ratio of the arithmetic-mean

and the geometric-mean of the smallest m - k eigenvalues whose equality is

tested.

The exact distribution of the statistic Qk under the null hypothesis H k is

unknown. However asymptotically, as N--# oo, it follows from the general theory

of likelihood-ratios (see e.g Cox and Hinckly (1974)) that the statistic -2lnQk has

a X2 distribution with (mp-k)2 - 1 degrees of freedom. Therefore, if N is

large an approximate test of size a of H, is to reject Hk  if

-21nQk>c(a;(mp-k) 2 -I), where c(c;r) is the upper 100a % point of the XO"

distribution. Note that the size a of the test is a parameter left to the subjec-

tive decision of the designer.

The hypotheses H (k = 0,1,...,mp-1) are tested sequentially. The value

of k for which H is first accepted is selected as the estimate d of the number

of sources. For the I-D problem (p=l) this procedure reduces to that presented

by Simkins (1980).

We should note that a different approach to the problem, based on applying

the information theoretic criteria for statistical model identification introduced by

Akaike, Schwartz and Rissanen, was recently presented by Wax and Kailath

(1983b). In this approach no subjective judgement is required in the decision pro-

cess.
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B. Estimation of the Elgenstructure

The method we have outlined for the determination of the directions-of-

arrival and the center-frequencies was based on the eigenstructure of the true

covariance matrix. The problem is that in practice the true covariance matrix

and hence its eigenstructure are unknown. To apply the method we must, there-

fore, estimate the eigenstructure from the data. To this end, let the eigenvalues

and eigenvectors of the sample-covariance matrix R, defined in (15), be given

by I I > 12 > ... > I, and CI..., PCrmP, respectively. Now, using the esti-

mate of the number of sources d, it follows from Anderson (1963) that the max-

imum likelihood estimates of the eigenvalues and eigenvectors of R are given

by

i2. (16.a)

mp-d

Vi " i--1 d
•V-;. r ---C, i -- 1,...,d (16.c)

and up to an orthogonal transformation from the right (the eigenvectors

corresponding to multiple eigenvalue define a subspace and are nonunique up to

an orthogonal transformation)

Vi = C i = d+ 1,...,mp (16.d)
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C. Estimation of the Directions-Or-Arrival and Center-Frequencies

With estimates of the number of sources and the eigenvectors we now

proceed to the simultaneous estimation of the directions-of-arrival and the

center-frequencies of the sources. We have seen that the direction-frequency vec-

tors corresponding to the d sources are orthogonal to the true eigenvectors

V d+ 1, . . . ,V P, corresponding to the repeated smallest eigenvalue. However,

since we only have estimate8 of these eigenvectors, the orthogonality relation does

not hold any more. Instead, the cosine of the angle between each of the

direction-frequency vectors A , • • . ,A and each of the eigenvectors

Vd"+ it • VMP will probably be "close" to zero, that is

co 2 1 A ~ 2 / kA~ Ahh o
Ci- A+ l,...,mp (17)

where . I denotes the modulus of the complex number. Thus, if Ao, denotes

the direction-frequency vector corresponding to a source at direction-of-arrival 0

and center-frequency w, then the d sources should be chosen as those whose

direction-frequency vectors are "most nearly orthogonal" to the set of eigenvec-

tors d + "" ,V--P) corresponding to the minimal eigenvalue.

There are many metrics that can be applied to measure this "distance from

orthogonality". One metric is the arithmetic-mean of the square cosines of the

angle between the direction-frequency vector and the eigenvectors corresponding

to the smallest eigenvalue, that is, 1 IAL. i 12/IA;.A.I.
mp-d i- I

Another metric is the geometric-mean of these quantities, that is
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IAV ., I mP 4 /IAJ.A, I. Both these metrics are two special cases of

the general family (see e.g Pisarenko (1972)) given by

1 - IALVi 12 )7/IAJ;k,kI. Clearly, the arithmetic-mean
mp-a i- + I

corresponds to r = 1. The geometric-mean can be shown to correspond to the

limit obtained as r--+ 0.

With these "orthogonality metrics", we can now proceed to the estimation of

the direction-of-arrival and the center-frequencies of the sources. Note that since

we are interested only in the extremal points of these metrics, we can extract the

information from any monotonic function of them. In order to resemble the form

of Capon's Minimum Variance (MV) and Burg's Maximum Entropy (ME) estima-

tors, it seems natural to choose the inverse of these metrics as the representative

form. For the arithmetic-mean metric, we therefore plot

JI(O, w)-- IA ;, i 1 (18.a)1--_ . IAi rV1 I2

For the geometric-mean metric, we plot

J0(A ) I ' ;LA. (18.b)

I AJ,r IAV --P
i-mJ+ I

and for the general-mean metric, we plot
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The directions-of-arrival and the center-frequencies of the impinging sources

are determined as the a points (01, j) ,..., (OlC,) that yield the highest

peaks of either of these 2-D functions.

The estimators presented above differ in their resolution and accuracy pro-

perties. The arithmetic-mean estimator will have a peak in the point (0, w) if

and only if A, is "almost orthogonal" to all the eigenvectors

*d+ It ,... 'rmp" The geometric-mean estimator, on the other hand, will have a

significant peak at the point (0, w) even if A# 0, is "almost orthogonal" to only

one of the eigenvectors VJ.+ I, " " V.P Therefore, the geometric-mean esti-

mator will have higher resolution but lower accuracy than the arithmetic-mean

estimator.

More delicate trade-offs between resolution and accuracy can be obtained by

using the general estimator (18.c) with the parameter r chosen appropriately.

We should note that Sharman et. al (1983) have recently shown that the

arithmetic-mean metric (18.a) is asymptotically optimal for the case of a single

source. That is, under a small error assumption, the bias of the estimator (18.a)

approaches zero, and its variance approaches the Cramer-Rao lower bound.

D. Estimation of the Covariance Matrix of the Sources

The source covariance matrix S contains valuable information on the
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impinging sources. The diagonal elements indicate the power of the sources, and

the off-diagonal elements indicate the cross-correlation between them. This infor-

mation can be valuable for distinguishing between a direct path and multipath,

for example.

Using the estimates of the number, the directions-of-arrival and the center-

frequencies of the sources, the estimate of the covariance matrix of the sources

follows immediately from the works of Schmidt (1979) and of Bienvenu and Kopp

(1981). Note first that (12) implies that

ASAt= (X -o 2 )VVt (19)
i=-l

Solving this equation for S, and substituting estimated quantities for the true

quantities, yields

= (A tA)- tVktA (.tA[I )-(20.a)

where

(20.b)

A=-IA ,, A (20.c)l,. 01
(20.d)

with A denoting the direction-frequency vector corresponding to the

estimated direction-of-arrival and center-frequency of the i'th source.
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E. Discussion

The maximum number of sources that the method can handle is pm - 1,

assuming that not more than m - 1 of them are "co-frequency" (i.e., have the

same center-frequency). These restrictions stem from condition (II) of our under-

lying assumptions which requires that any set of d + 1 direction-frequency

vectors should be linearly independent. Thus, since the frequency-direction vector

is of dimension mp, the number of sources d must be no greater then pm - 1.

The restriction on the number of co-frequency sources is because the subspace of

all possible co-frequency direction-frequency vectors is of dimension no greater

than the the number of sensors m, regardless of the number of taps p. That is,

any set of m or more co-frequency direction-frequency vectors will definitely

be linearly dependent. Therefore, for condition (11) above to hold, the number of

co-frequency sources should be no greater than m - 1.

The structure of the array for which the method is applicable is also res-

tricted by condition (II) above. This condition does not hold in general for arbi-

trary geometry and arbitrary number of taps. It turns out, for example, that for

the case of a uniform linear array, this condition does not hold for one tap, i.e.,

p = 1. This is because all the direction-frequency vectors corresponding to

points (0 w) on the curve w sine = conatant are identical, and hence

linearly dependent. Thus to assure the applicability of the method in the case of

a uniform linear array, a tapped-delay-line with more than one tap is needed.

The exact number of taps p that will guarantee the applicability of the method

for a given geometry and frequency band is unknown even for the simple case of

I]



-22-

uniform linear array. Nevertheless, the simulation results (see sec. V) show that

this number is usually very small.

The method presented (with the arithmetic-mean metric) reduces to

Pisarenko and Schmidt's method for the I-D problem, that is, for the case that

all the sources have the same known center-frequency and only one tap is used

(p - 1) (Pisarenko's method is a special case of Schmidt's method where only

one of the eigenvectors corresponding to the smallest eigenvalue is used).

Larimore's (1981) method and the variant of Reddy et al. (1982b) essentially

amounts to on-line computation of the eigenvector corresponding to the smallest

P_
eigenvalue of the covariance matrix (a fact not pointed out in either paper).

Thus, Their method can be regarded as an on-line implementation of the off-line

2-D extension to Pisarenko's method we have presented above.

rL
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IV. Frequency-domain Elgenstructure Method for the Wideband Problem

The solution we are going to present for the wideband problem is based on

the the eigenstructure of the spectral-density matrix K (w.) and therefore is

referred to as a frequency-domain method. It presumes that the following condi-

tions hold:

(I) The spectral-density matrix P(w.) is nonsingular.

(I) Any set of d+ 1 direction vectors are linearly independent.

With these assumptions it can be easily verified that the eigenvalues and

eigenvectors of K (w.), denoted by XI(w.) < ... < X,(w.) and

V,(w:),...,V ,(w.) , respectively, have the following properties:

The minimal eigenvalue of K(w3 ) is o'2(w.) with multiplicity m - d, i.e.

\d+ l i • . . ) -- -- ) (21)

The eigenvectors corresponding to the minimal eigenvalue are orthogonal to the

columns of the matrix A (w.), i.e.

A(w.) t V (w.) - 0 i = d+ 1,...,m (22.a)

or, more explicitly

IV d+ I(WJ.I"V M (w%)) .- A 0A,(wm),I... A ,(w.)) (22.b)

where A,(w) is the k 'th column of the matrix A(w.), referred to as the

direction-vector of the k 'th source. Note that the orthogonality relation (22)

holds for every w. that is included in the signal bandwidth B.
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These relations form the basis for the frequency-domain eigenstructure

method. Because of the analogy with the time-domain method we shall proceed

directly to the description of the method.

A. Determination of the Number of Sources

As in the time-domain method, the number of sources can be determined

from the multiplicity of the smallest eigenvalue of the spectral density matrix

K(w.). Applying the Bartlett-Lawley procedure, the hypothesis tested at the k

'th step is given by

HAW.) -\ k+ ,(W:.) -\.= .(W:.)

Following a well-known analogy between multivariate analysis and time-series

analysis (see, e.g, Brillinger (1064) and Wahba (1968)), the likelihood-ratio for

this hypothesis is obtained simply by substituting the eigenvalues of the periodo-

gram estimate of the spectral-density matrix for those of the sample-covariance

matrix, that is

rL
,nk Ii

Qk(W.) = "- . (23)

(- k ik.+ 1

where L1(w5 ) 2(!) .. . (i,) denote the eigenvalues of the periodogram

estimate of the spectral density matrix

- LK(WO) L E Rj(w.)R~(w 3  (24)
i-=l
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with Ri(w.) denoting the Fourier-coefficient vector of the i-th subinterval at

the frequency w. and L denoting the number of subintervals.

Since the sources are wideband, the number of sources can be estimated

from any frequency w. E B. Thus, to minimize the probability of error, the fol-

lowing composite hypothesis, which captures the information in all the frequen-

cies w3 E B, should be tested:

Hk : Xk+ i(W.) = ... = Xp(W.) for everyw. E B

Assuming that the observation time T is much larger than the processes corre-

lation time, it follows (see, e.g, Whalen p.81) that the Fourier-coefficients

corresponding to different frequencies are uncorrelated. Thus, under Gaussian

assumptions, the composite likelihood-ratio test is given by

I+M

Q,= H Q,(wP) (25)

The statistic -21n Qk has in this case an asymptotic x2 distribution with

M[(m-k) 2 - 1] degrees of freedom. Therefore, if N is large an approximate test

of size a of Hk is to reject Hk if -2laQk>c(k;(m-k) 2 -1), where c(a;r) is the

upper 100a % point of the X 2 distribution.

The hypotheses Hk (k = 0,1,...,m-1) are tested sequentially. The value of

k for which Hk is first accepted is selected as the estimate d of the number of

sources. For the I-D problem (M=I) this procedure reduces to that presented by

Ligget (1972).

We should note that a different approach to the problem, based on applying

the information theoretic criteria for statistical model identification introduced by
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Akaike, Schwartz and Rissanen, was recently presented by Wax and Kailath

(1983b). In this approach no subjective judgement is required in the decision pro-

cess.
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B. Estimation of the Elgenstructure

Let ii(w.j4(w.J "" lm(Wj) and CI(w.), .. ,C(w.) denote the

eigenvalues and eigenvectors, respectively, of the the spectral density matrix

K(w.). Following again the duality between multivariate analysis and time-

* series analysis, it follows that the maximum likelihood estimates of the eigenvalue

and eigenvectors of K (w.) are given by

Xi() I(W) i = I,...,d (26.a)

I-do (26.b) -

Vi(W.)= Ci(w) i =1 ...,d (26.c)

and up to an orthogonal transformation from the right

Vi(W) = CAW.) i = d+ 1,...,m (26.d)

C. Estimation of the DIrectlons-Of-Awrival

By analogy with the time domain method, the d directions-of-arrival

should be chosen as those whose direction vectors are "most nearly orthogonal"

to the set of eigenvectors (V k (w.), k = 1,...,m - d}. Note that this "distance

from orthogonality" should be measured for afl the frequency bins w. E B.

Thus, we must first measure the "distance from orthogonality" at each frequency

bin, and then combine the resulted measures for the different frequencies. Using

the arithmetic-mean metric both for the individual frequency bins and for the
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combination over the frequency range, yields the estimator (the subscript 11

stands for the double use of the arithmetic-mean metric), given by

A J(w. )A O(ow.
J11(e)= II+M I (27.a)

81m- k.- + 1

Using the arithmetic-mean metric for the individual frequency bins and the

geometric-mean metric for the combination over the frequency range, yields the

estimator

J1o(e) - (27.b)
i+M 1__

11 (- I (.* .1)
Seal m-dk-a J + I

The directions-of-arrival of the sources are then determined as the

points 01, ... , 0, that yield the highest peaks of either one of the estimators

given in (27).

Note that other combinations of the arithmetic-mean and the geometric-

mean metrics, as well as other combinations of different metrics from the general

family of metrics introduced in section I can be used. From the corresponding

discussion for the time-domain method it follows that the estimator (27.b) exhi-

bits higher resolution and lower accuracy than the estimator (27.a).

D. Estimation of the Spectral Density Matrix of the Sources

The spectral density matrix of the sources P (w.) contains valuable infor-

mation on the impinging sources. The diagonal elements yield the spectral



densities of the sources, and thus provides a tool for classifying the sources

according to their spectral "signatures". The off-diagonal elements indicate the

amount of correlation existing between the sources, and thus provide a way to

distinguish between a direct path and multipath, for example.

The estimation scheme is analogous to that described for the time-domain

method. Therefore by analogy with (20), we obtain

P (w )=[A t(w: )A (w: )]-At(w, )V (w: )A.1, )) t(w* )A (w~ )rA t(w. )A (w, )1-(28. a)

where

w.,-- [V(w 3) "" (W. (28.b)

X1 w) - .-2(

(28.c)

and

(w) -- [Aj,(w.) ... A^,(w.)] (26.d)

with A -(w.) denoting the direction-vector corresponding to the estimated -

direction-of-arrival of the i-th source.

E. Discussion

The maximum number of sources the method can handle is m - 1. From

the requirement that any set of d + I direction-vectors be linearly indepen-
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dent, it follows that since the direction-vector is of dimension m, the number of

sources should be no greater than m - 1.

The structure of the array for which the frequency-domain method is appli-

cable is restricted by condition that any d + 1 direction-vectors be linearly

independent. Note, however, that for a omnidirectional (ae = 1) uniform

linear array, this condition is always satisfied, because of the Vandermonde type

of the direction-vectors.

The estimation of the spectral-density matrix of the received signals is by no

means restricted to the peridogram method. Any multivariate spectral estimation

technique, parametric or nonparametric can be used if there is reason to believe

that it will give bettter results.

The frequency-domain eigenstructure method we have presented reduces to

Bienvenu and Kopp's method for the I-D problem, that is, when the sources

occupy only one frequency bin (M=I).
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V. Simulations Results

In this section we present computer simulation results that illustrate the per-

formance of the proposed methods. All the examples will refer to a uniform linear

array. For this type of array it is convenient to use the notion of normalized fre-

quency, defined as W s , where w is the frequency of the source, 0 is its
C

direction-of-arrival, A is the spacing between the sensors, and c is the speed of

propagation.

In the first example we wanted to demonstrate the time-domain method for

the narrowband problem. We considered 2 sinusoidal sources, having normal-

ized frequencies 0.2 and 0.3 and normalized wavenumbers 0.125 and 0.2,

respectively, impinging on a uniform linear array of 3 sensors (m=3), each fol-

lowed by a tapped-delay-line with 3 taps (p=3). The signal-to-noise ratio was

10dB. The results, obtained from 200 "snapshots", using the estimator (18.a), are

presented in Fig. 2. The two peaks corresponding to the two sources are clearly

seen.

In the second example we wanted to demonstrate the ability of the time-

domain method to resolve more sources than the number of sensors, given that

the number of taps is appropriate. We considered 4 sinusoidal sources, having

normalized frequencies 0.1 , 0.2 , 0.3 and 0.4 and normalized wavenumbers

0.125 , 0.25 , 0.35 , and 0.42 , respectively, impinging on a uniform linear array

of 3 sensors (m=3), each followed by a tapped-delay-line of 3 taps (p=3). The

signal-to-noise ratio was 10dB. The results, obtained from 1000 "snapshots",
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using the estimator (18.a), are presented in Fig.3. The four peaks corresponding

to the four sources are clearly seen.

In the third example we wanted to demonstrate the frequency-domain

method for the wideband problem. We considered 3 wideband sources having

identical spectra, centered at 0.25 with bandwidth 0.05, impinging from 360,

60P , and 1200 on a uniform linear array of 5 sensors (m=5) spaced a third

wavelength apart. The signal-to-noise ratio was SdB. The results obtained from

100x64 samples, using the estimator (27.a) are presented in Fig. 4 (a 64 point

DFT was used to compute the spectral-density matrix). The three peaks

corresponding to the three sources are clearly seen.

--. 1
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VI. Concluding Remarks

The eigenstructure methods devioped by Pisarenko (1973), Schmidt (1079)

and Bienvenu and Kopp (1980), were confined to the 1-D problem. In this paper

we have generalized these methods to the 2-D problem, that is, to the simultane-

ous estimation of the spatio-temporal spectrum of the signals received by the pas-

sive array. We have presented both a time-domain method, based on the eigen-

structure of the covariance matrix of the received signals, and a frequency-

domain method, based on the eigenstructure of the spectral-density matrix of the

received signals. Though the time-domain method was applied to the nar-

rowband problem and the frequency-domain method was applied to the wideband

problem, the methods are in fact applicable to both problems. The applicability

of the frequency-domain method to the narrowband case can be seen by noting

that the wideband problem includes the narrowband problem as a special case

corresponding to M = 1. The applicability of the time-domain method to the

wideband problem can be seen by noting that from the Fourier-representation it

follow that a wideband signal can be decomposed to a weighted sum of M com-

plex exponentials. Thus, the applicability of the time-domain method to the

wideband problem is guaranteed if the number of taps p is at least equal to M.

However, the computational complexity involved in implementing the time-

domain method for the wideband problem and the frequency-domain method for

the narrowband problem, make these alternatives unattractive in practice.

The resolution offered by the eigentructure methods depends crucially on the

quality of the estimates of the covariance and spectral-density matrices. If the
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data record is long enough to enable resonably good estimates of these matrices,

the resolution is very high even in relatively low signal-to-noise ratios. However,

if the data record is too short, the performance of these methods deterioate drast-

ically.

Theoretical analysis of the performance of these method for finite record

length seems to be a very difficult problem. The only analytical results available

are for the asymptotic where the record length approaches infinity. It has been

recently shown by Sharman et al (1983) that the eigenstructure estimator based

on the arithmetic-mean metric is asymptotically unbiased, and that for the case

L of a single source, it is even efficient, that is, its variance approches the Cramer-

Rao lower bound.

The methods we have presented can be straightforwardly extended to the

case that the sources have diverse polarization (see Schmidt (1979) and Ferrara

and Parks (1983)) and to the more general problem of source localization (see

Wax et. al (1982)).
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